BUSCAR IMAGENES

domingo, 15 de mayo de 2011

tema 3.13 transformada de laplace de la funcion Delta Dirac


Es evidente que, hasta el momento, la transformada de Laplace no es más que otra técnica para la resolución de ecuaciones diferenciales. Sin embargo, su popularidad (sobre todo en problemas de ingeniería) radica en que nos permite resolver ecuaciones en las cuales el término independiente puede ser sumamente "mal portado". En el caso de la ecuación (3), el término H(t) podría no ser una función continua (lo cual representa mejor a la realidad), con lo cual la función x(t) sería diferenciable por pedazos. El tipo de funciones H(t) que vamos a analizar son funciones que son nulas, excepto en algunos intervalos o instantes de tiempo predeterminados.
La función más simple de este tipo es la función escalón o función de Heaviside. Ésta se define para cualquier a = 0 como sigue:

Es fácil ver que su transformada de Laplace está dada por
Una variante de esta función es la siguiente:
Asimismo, tomando el límite cuando .t . 0 se define
A esta última función se la conoce como la función delta de Dirac. Llamamos función de impulso a cualquier función que se obtenga como una combinación lineal de deltas de Dirac.

No hay comentarios:

Publicar un comentario